📔
intro-to-python
  • An Introduction to Programming in Python (for Business Students)
  • exercises
    • Data Flow Diagramming Exercise
    • Developer Collaboration Exercise
    • README
    • "Web App" Exercise
      • checkpoints
        • Checkpoint 5: Bootstrap Layout
        • Checkpoint 4: Submitting Data from Web Forms
        • Checkpoint 3: Rendering HTML Pages
        • Checkpoint 1: Routing
        • Checkpoint 2: Modular Organization
      • "Web App" Exercise - Further Exploration
    • hello-world
      • "Hello World (Local)" Exercise
      • "Hello World (Local w/ Version Control)" Exercise
      • "Hello World (Colab)" Exercise
    • "Interface Capabilities" Exercise
    • "Continuous Integration 1, 2, 3" Exercise
    • "Web Service" Exercise
      • "Web Service" Exercise - Further Exploration
    • "Testing 1, 2, 3" Exercise
    • "Command-line Computing" Exercise
      • "Command-line Computing" Exercise
      • Professor Rossetti's Mac Terminal Configuration
      • Command-line Computing Exercise
    • "Codebase Cleanup" Assignment
    • "List Comprehensions" Exercise
    • "Groceries" Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
    • "Rock, Paper, Scissors" Exercise
      • "Rock, Paper, Scissors" Exercise
    • README
    • "Monthly Sales Predictions" Exercise
    • Setting up your Local Development Environment
    • "Chart Gallery" Exercise
    • "Run the App" Exercise
    • "Web Requests" Exercise
    • "API Client" Exercise
    • "Custom Functions" Exercise
    • Process Diagramming Exercise
  • notes
    • python
      • packages
        • The bigquery Package
        • The PySimpleGUI Package
        • The dotenv Package
        • The matplotlib Package
        • The requests Package
        • The altair Package
        • The gspread Package
        • The PyMySQL Package
        • The psycopg2 Package
        • The selenium Package
        • The seaborn Package
        • The pytest Package
        • The SpeechRecognition Package
        • The flask Package
        • The pandas Package
        • The spotipy Package
        • The pipenv Package
        • The nltk Package
        • The sqlalchemy Package
        • The pymongo Package
        • The plotly Package
        • The BeautifulSoup Package
        • The sendgrid Package
        • The fpdf Package
        • The autopep8 Package
        • The tweepy Package
        • The twilio Package
        • The tkinter Package
      • Python Datatypes Overview
        • Numbers
        • Classes
        • Dates and Times
        • Strings
        • None
        • Dictionaries
        • Booleans
        • Lists
        • Class Inheritance
      • Control Flow
      • Python Modules
        • The webbrowser Module
        • The time Module
        • The csv Module
        • The sqlite3 Module
        • The itertools Module
        • The json Module
        • The math Module
        • The os Module
        • The statistics Module
        • The random Module
        • The pprint Module
        • The datetime Module
        • The collections Module
      • Printing and Logging
      • Comments
      • Syntax and Style
      • Functions
      • Variables
      • Errors
      • Docstrings
      • File Management
      • User Inputs
      • Debugging
    • clis
      • The git Utility
      • Heroku, and the heroku Utility
      • Anaconda
      • The chromedriver Utility
      • The brew Utility (Mac OS)
      • The pdftotext Utility
      • The python Utility
      • The pip Utility
    • Software
      • Software Licensing
      • Software Documentation
      • Software Ethics
      • Software Testing Overview
      • Application Programming Interfaces (APIs)
      • Software Version Control
      • Software Refactoring Overview
    • devtools
      • The VS Code Text Editor
      • Code Climate
      • Travis CI
      • GitHub Desktop Software
      • Git Bash
      • Google Colab
    • Information Systems
      • Computer Networks
      • Processes
      • Datastores
      • Information Security and Privacy
      • People
    • Technology Project Management
      • Project Management Tools and Techniques
      • The Systems Development Lifecycle (SDLC)
    • hardware
      • Servers
    • Environment Variables
  • projects
    • "Executive Dashboard" Project
      • testing
      • "Exec Dash" Further Exploration Challenges
    • The Self-Directed (a.k.a "Freestyle") Project
      • "Freestyle" Project - Demonstration
      • "Freestyle" Project - Implementation (TECH 2335 Version)
      • "Freestyle" Project - Implementation
      • "Freestyle" Project Proposal
      • plan
    • "Robo Advisor" Project
      • Robo Advisor Project - Automated Testing Challenges
      • "Robo Advisor" Further Exploration Challenges
    • "Shopping Cart" Project
      • "Shopping Cart" Project - Automated Testing Challenges
      • "Shopping Cart" Further Exploration Challenges
      • "Shopping Cart" Project Checkpoints
  • License
  • Exam Prep
  • units
    • Unit 4B: User Interfaces and Experiences (Bonus Material)
    • Unit 5b: Databases and Datastores
    • Module 1 Review
    • Unit 7b: Processing Data from the Internet (Bonus Material)
    • Unit 9: Software Products and Services
    • Unit 8: Software Maintenance and Quality Control
    • Unit 7: Processing Data from the Internet
    • Unit 6: Data Visualization
    • Unit 5: Processing CSV Data
    • Unit 4: User Interfaces and Experiences
    • Unit 3: Python Datatypes
    • Unit 12: Project Presentations
    • Unit 2: Python Language Overview
    • Unit 11: Project Implementation Sprint
    • Unit 1: The Python Development Environment
    • Unit 10: Software Planning, Analysis, and Design
    • Unit 0: Onboarding
    • Unit 5B: Advanced Data Analytics
  • Contributor's Guide
Powered by GitBook
On this page
  • Reference
  • Installation
  • Usage

Was this helpful?

  1. notes
  2. python
  3. packages

The altair Package

PreviousThe requests PackageNextThe gspread Package

Last updated 5 years ago

Was this helpful?

Prerequisite: The Package

Altair is a declarative statistical visualization library for Python ... with a minimal amount of code. -

Reference

Installation

First install the package using Pip, if necessary:

pip install altair
pip install vega_datasets # only if you're trying to use one of their provided datasets

Usage

To display a new chart, construct it by specifying certain chart configuration options, including the type of chart and the data to visualize.

Example using provided dataset:

# adapted from: https://altair-viz.github.io/user_guide/display_frontends.html#working-in-non-notebook-environments

import altair
from vega_datasets import data # load a simple dataset as a pandas DataFrame

cars = data.cars() # for example, using a built-in dataset, but you can provide your own

chart = altair.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
).interactive()

chart.serve()

NOTE: once you "serve" the chart, you'll see your terminal window get taken over by running a web server. You'll be able to view your chart in a web browser, but when you're done you'll need to quit the web server by pressing control+c in your terminal. After doing so you will regain the ability to type commands in your terminal window.

Example using custom dataset:

# adapted from: https://altair-viz.github.io/gallery/simple_bar_chart.html
import altair as alt
import pandas as pd

source = pd.DataFrame({
    "a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
    "b": [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

chart = alt.Chart(source).mark_bar().encode(
    x="a",
    y="b"
)

chart.serve()

Consult the documentation and examples for a variety of chart customization options.

the resulting chart - a scatter plot
the resulting chart - a bar chart

NOTE: it appears altair requires you to specify the data as a . If you'd rather not use Pandas, consider choosing a different charting library.

pandas
Altair website
https://github.com/altair-viz/altair
https://altair-viz.github.io/
Working in non-notebook environments
https://altair-viz.github.io/user_guide/API.html
Pandas DataFrame