📔
intro-to-python
  • An Introduction to Programming in Python (for Business Students)
  • exercises
    • Data Flow Diagramming Exercise
    • Developer Collaboration Exercise
    • README
    • "Web App" Exercise
      • checkpoints
        • Checkpoint 5: Bootstrap Layout
        • Checkpoint 4: Submitting Data from Web Forms
        • Checkpoint 3: Rendering HTML Pages
        • Checkpoint 1: Routing
        • Checkpoint 2: Modular Organization
      • "Web App" Exercise - Further Exploration
    • hello-world
      • "Hello World (Local)" Exercise
      • "Hello World (Local w/ Version Control)" Exercise
      • "Hello World (Colab)" Exercise
    • "Interface Capabilities" Exercise
    • "Continuous Integration 1, 2, 3" Exercise
    • "Web Service" Exercise
      • "Web Service" Exercise - Further Exploration
    • "Testing 1, 2, 3" Exercise
    • "Command-line Computing" Exercise
      • "Command-line Computing" Exercise
      • Professor Rossetti's Mac Terminal Configuration
      • Command-line Computing Exercise
    • "Codebase Cleanup" Assignment
    • "List Comprehensions" Exercise
    • "Groceries" Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
    • "Rock, Paper, Scissors" Exercise
      • "Rock, Paper, Scissors" Exercise
    • README
    • "Monthly Sales Predictions" Exercise
    • Setting up your Local Development Environment
    • "Chart Gallery" Exercise
    • "Run the App" Exercise
    • "Web Requests" Exercise
    • "API Client" Exercise
    • "Custom Functions" Exercise
    • Process Diagramming Exercise
  • notes
    • python
      • packages
        • The bigquery Package
        • The PySimpleGUI Package
        • The dotenv Package
        • The matplotlib Package
        • The requests Package
        • The altair Package
        • The gspread Package
        • The PyMySQL Package
        • The psycopg2 Package
        • The selenium Package
        • The seaborn Package
        • The pytest Package
        • The SpeechRecognition Package
        • The flask Package
        • The pandas Package
        • The spotipy Package
        • The pipenv Package
        • The nltk Package
        • The sqlalchemy Package
        • The pymongo Package
        • The plotly Package
        • The BeautifulSoup Package
        • The sendgrid Package
        • The fpdf Package
        • The autopep8 Package
        • The tweepy Package
        • The twilio Package
        • The tkinter Package
      • Python Datatypes Overview
        • Numbers
        • Classes
        • Dates and Times
        • Strings
        • None
        • Dictionaries
        • Booleans
        • Lists
        • Class Inheritance
      • Control Flow
      • Python Modules
        • The webbrowser Module
        • The time Module
        • The csv Module
        • The sqlite3 Module
        • The itertools Module
        • The json Module
        • The math Module
        • The os Module
        • The statistics Module
        • The random Module
        • The pprint Module
        • The datetime Module
        • The collections Module
      • Printing and Logging
      • Comments
      • Syntax and Style
      • Functions
      • Variables
      • Errors
      • Docstrings
      • File Management
      • User Inputs
      • Debugging
    • clis
      • The git Utility
      • Heroku, and the heroku Utility
      • Anaconda
      • The chromedriver Utility
      • The brew Utility (Mac OS)
      • The pdftotext Utility
      • The python Utility
      • The pip Utility
    • Software
      • Software Licensing
      • Software Documentation
      • Software Ethics
      • Software Testing Overview
      • Application Programming Interfaces (APIs)
      • Software Version Control
      • Software Refactoring Overview
    • devtools
      • The VS Code Text Editor
      • Code Climate
      • Travis CI
      • GitHub Desktop Software
      • Git Bash
      • Google Colab
    • Information Systems
      • Computer Networks
      • Processes
      • Datastores
      • Information Security and Privacy
      • People
    • Technology Project Management
      • Project Management Tools and Techniques
      • The Systems Development Lifecycle (SDLC)
    • hardware
      • Servers
    • Environment Variables
  • projects
    • "Executive Dashboard" Project
      • testing
      • "Exec Dash" Further Exploration Challenges
    • The Self-Directed (a.k.a "Freestyle") Project
      • "Freestyle" Project - Demonstration
      • "Freestyle" Project - Implementation (TECH 2335 Version)
      • "Freestyle" Project - Implementation
      • "Freestyle" Project Proposal
      • plan
    • "Robo Advisor" Project
      • Robo Advisor Project - Automated Testing Challenges
      • "Robo Advisor" Further Exploration Challenges
    • "Shopping Cart" Project
      • "Shopping Cart" Project - Automated Testing Challenges
      • "Shopping Cart" Further Exploration Challenges
      • "Shopping Cart" Project Checkpoints
  • License
  • Exam Prep
  • units
    • Unit 4B: User Interfaces and Experiences (Bonus Material)
    • Unit 5b: Databases and Datastores
    • Module 1 Review
    • Unit 7b: Processing Data from the Internet (Bonus Material)
    • Unit 9: Software Products and Services
    • Unit 8: Software Maintenance and Quality Control
    • Unit 7: Processing Data from the Internet
    • Unit 6: Data Visualization
    • Unit 5: Processing CSV Data
    • Unit 4: User Interfaces and Experiences
    • Unit 3: Python Datatypes
    • Unit 12: Project Presentations
    • Unit 2: Python Language Overview
    • Unit 11: Project Implementation Sprint
    • Unit 1: The Python Development Environment
    • Unit 10: Software Planning, Analysis, and Design
    • Unit 0: Onboarding
    • Unit 5B: Advanced Data Analytics
  • Contributor's Guide
Powered by GitBook
On this page
  • Parameters (Input Values)
  • Single Parameter
  • Multiple Parameters
  • Return Values

Was this helpful?

  1. notes
  2. python

Functions

PreviousSyntax and StyleNextVariables

Last updated 5 years ago

Was this helpful?

Reference:

Use a function to define your own custom, re-usable operation. Like in other languages, Python functions must first be defined before they can be invoked (or called).

Define a function:

def do_stuff(): # NOTE: the trailing parentheses are required
    print("DOING STUFF HERE!")

Invoke the function:

do_stuff() # NOTE: the trailing parentheses are important. If they are omitted, the function will be accessed but not be invoked

If you try to invoke a function before or without defining it, you will see an error like NameError: name 'do_stuff' is not defined.

Parameters (Input Values)

Some functions accept parameters which can be passed to the function during its invocation. A function's parameters must be configured during the function's definition.

Single Parameter

Define a function with a parameter:

def do_stuff_with_param(message):
    print("---------")
    print(message)
    print("---------")

In this case, message is the name of the function's parameter. Invoke it like so:

do_stuff_with_param("HELLO!")
#> ---------
#> HELLO!
#> ---------

do_stuff_with_param("HELLO AGAIN!")
#> ---------
#> HELLO AGAIN!
#> ---------
m = "HELLO!"
do_stuff_with_param(m)
#> ---------
#> HELLO!
#> ---------

s = "HELLO AGAIN!"
do_stuff_with_param(s)
#> ---------
#> HELLO AGAIN!
#> ---------

Multiple Parameters

Defining a function with multiple parameters:

def do_stuff_with_params(message, first_name, last_name):
    print("'" + message + "', says " + first_name + " " + last_name)

The order of the parameters during function definition corresponds with the order they should be passed during function invocation. In this case, message, first_name and last_name are the names of the function's parameters, in that order. So we can invoke the function like so:

do_stuff_with_params("HELLO THERE", "Ophelia", "Clark")
#> 'HELLO THERE', says Ophelia Clark

It is possible to pass the parameters in a different order, by explicitly specifying the parameter name during function invocation:

do_stuff_with_params(first_name= "Ophelia", message="HELLO THERE", last_name="Clark")
#> 'HELLO THERE', says Ophelia Clark

Return Values

In order to have a function return some value when invoked, use the return keyword.

A geometry-inspired example:

def calculate_area(length, height):
  length * height

area = calculate_area(4, 2)
print(area) #> None
def calculate_area(length, height):
  return length * height

area = calculate_area(4, 2)
print(area) #> 8

An algebra-inspired example:

# function definition (once only)

def f(x):
    return (2 * x) + 1

# function invocation (potentially many times, as needed)

y = f(5)
print(y) #> 11

z = f(10)
print(z) #> 21
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#more-on-defining-functions
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values
https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments