📔
intro-to-python
  • An Introduction to Programming in Python (for Business Students)
  • exercises
    • Data Flow Diagramming Exercise
    • Developer Collaboration Exercise
    • README
    • "Web App" Exercise
      • checkpoints
        • Checkpoint 5: Bootstrap Layout
        • Checkpoint 4: Submitting Data from Web Forms
        • Checkpoint 3: Rendering HTML Pages
        • Checkpoint 1: Routing
        • Checkpoint 2: Modular Organization
      • "Web App" Exercise - Further Exploration
    • hello-world
      • "Hello World (Local)" Exercise
      • "Hello World (Local w/ Version Control)" Exercise
      • "Hello World (Colab)" Exercise
    • "Interface Capabilities" Exercise
    • "Continuous Integration 1, 2, 3" Exercise
    • "Web Service" Exercise
      • "Web Service" Exercise - Further Exploration
    • "Testing 1, 2, 3" Exercise
    • "Command-line Computing" Exercise
      • "Command-line Computing" Exercise
      • Professor Rossetti's Mac Terminal Configuration
      • Command-line Computing Exercise
    • "Codebase Cleanup" Assignment
    • "List Comprehensions" Exercise
    • "Groceries" Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
      • Python Datatypes (a.k.a. "Groceries") Exercise
    • "Rock, Paper, Scissors" Exercise
      • "Rock, Paper, Scissors" Exercise
    • README
    • "Monthly Sales Predictions" Exercise
    • Setting up your Local Development Environment
    • "Chart Gallery" Exercise
    • "Run the App" Exercise
    • "Web Requests" Exercise
    • "API Client" Exercise
    • "Custom Functions" Exercise
    • Process Diagramming Exercise
  • notes
    • python
      • packages
        • The bigquery Package
        • The PySimpleGUI Package
        • The dotenv Package
        • The matplotlib Package
        • The requests Package
        • The altair Package
        • The gspread Package
        • The PyMySQL Package
        • The psycopg2 Package
        • The selenium Package
        • The seaborn Package
        • The pytest Package
        • The SpeechRecognition Package
        • The flask Package
        • The pandas Package
        • The spotipy Package
        • The pipenv Package
        • The nltk Package
        • The sqlalchemy Package
        • The pymongo Package
        • The plotly Package
        • The BeautifulSoup Package
        • The sendgrid Package
        • The fpdf Package
        • The autopep8 Package
        • The tweepy Package
        • The twilio Package
        • The tkinter Package
      • Python Datatypes Overview
        • Numbers
        • Classes
        • Dates and Times
        • Strings
        • None
        • Dictionaries
        • Booleans
        • Lists
        • Class Inheritance
      • Control Flow
      • Python Modules
        • The webbrowser Module
        • The time Module
        • The csv Module
        • The sqlite3 Module
        • The itertools Module
        • The json Module
        • The math Module
        • The os Module
        • The statistics Module
        • The random Module
        • The pprint Module
        • The datetime Module
        • The collections Module
      • Printing and Logging
      • Comments
      • Syntax and Style
      • Functions
      • Variables
      • Errors
      • Docstrings
      • File Management
      • User Inputs
      • Debugging
    • clis
      • The git Utility
      • Heroku, and the heroku Utility
      • Anaconda
      • The chromedriver Utility
      • The brew Utility (Mac OS)
      • The pdftotext Utility
      • The python Utility
      • The pip Utility
    • Software
      • Software Licensing
      • Software Documentation
      • Software Ethics
      • Software Testing Overview
      • Application Programming Interfaces (APIs)
      • Software Version Control
      • Software Refactoring Overview
    • devtools
      • The VS Code Text Editor
      • Code Climate
      • Travis CI
      • GitHub Desktop Software
      • Git Bash
      • Google Colab
    • Information Systems
      • Computer Networks
      • Processes
      • Datastores
      • Information Security and Privacy
      • People
    • Technology Project Management
      • Project Management Tools and Techniques
      • The Systems Development Lifecycle (SDLC)
    • hardware
      • Servers
    • Environment Variables
  • projects
    • "Executive Dashboard" Project
      • testing
      • "Exec Dash" Further Exploration Challenges
    • The Self-Directed (a.k.a "Freestyle") Project
      • "Freestyle" Project - Demonstration
      • "Freestyle" Project - Implementation (TECH 2335 Version)
      • "Freestyle" Project - Implementation
      • "Freestyle" Project Proposal
      • plan
    • "Robo Advisor" Project
      • Robo Advisor Project - Automated Testing Challenges
      • "Robo Advisor" Further Exploration Challenges
    • "Shopping Cart" Project
      • "Shopping Cart" Project - Automated Testing Challenges
      • "Shopping Cart" Further Exploration Challenges
      • "Shopping Cart" Project Checkpoints
  • License
  • Exam Prep
  • units
    • Unit 4B: User Interfaces and Experiences (Bonus Material)
    • Unit 5b: Databases and Datastores
    • Module 1 Review
    • Unit 7b: Processing Data from the Internet (Bonus Material)
    • Unit 9: Software Products and Services
    • Unit 8: Software Maintenance and Quality Control
    • Unit 7: Processing Data from the Internet
    • Unit 6: Data Visualization
    • Unit 5: Processing CSV Data
    • Unit 4: User Interfaces and Experiences
    • Unit 3: Python Datatypes
    • Unit 12: Project Presentations
    • Unit 2: Python Language Overview
    • Unit 11: Project Implementation Sprint
    • Unit 1: The Python Development Environment
    • Unit 10: Software Planning, Analysis, and Design
    • Unit 0: Onboarding
    • Unit 5B: Advanced Data Analytics
  • Contributor's Guide
Powered by GitBook
On this page

Was this helpful?

  1. notes
  2. python
  3. Python Datatypes Overview

Strings

PreviousDates and TimesNextNone

Last updated 5 years ago

Was this helpful?

Reference: .

Strings represent textual information, including words and alpha-numeric characters.

"Hello World"
"username123"

Don't be confused if you see multi-line strings:

str = """
Some
Multi-line
String
"""

str #> '\nSome\nMulti-line\nString\n'

print(str)
#>
#> Some
#> Multi-line
#> String
#>

Example string functions:

# string concatenation
"Hello" + " " + "World" #> "Hello World"

# string formatting
"{0} {1}".format("Hello", "World") #> "Hello World"
"My Message is: {0}".format("Hello World") #> "My message is: Hello World"

# string interpolation (note the preceding `f`)
greeting = "Hello"
audience = "World"
f"My message is: {greeting} {audience}" #> "My message is: Hello World"

# string manipulation
"hello world".upper() #> "HELLO WORLD"
"Hello World".lower() #> "hello world"
"hello world".title() #> "Hello World"
"   Hello World   ".strip() #> "Hello World"
"Hello World".replace("Hello", "Goodbye") #> "Goodbye World"

Strings also support equality, inclusion, and matching operators:

"Hello World" == "Hello World" #> True
"Hello World" == "hello world" #> False

"Hello" in "Hello World" #> True
"hello" in "Hello World" #> False

"Hello World".count("l") #> 3

Strings are iterable objects comprised of multiple characters. Once you have learned about lists, you can perform additional list-related operations:

"Hello World"[0] #> "H"
"Hello World"[6] #> "W"
"Hello World"[-1] #> "d"
"Hello World"[-3] #> "r"

for character in "Hello World":
    print(character)
#>
#> H
#> e
#> l
#> l
#> o
#>
#> W
#> o
#> r
#> l
#> d

"Hello World".split() #> ["Hello", "World"]
"My Title - My Subtitle".split(" - ") #> ['My Title', 'My Subtitle']
"a, b, c, d".split(", ") #> ['a', 'b', 'c', 'd']

str = """
Some
Multi-line
String
"""
str.strip().split("\n") #> ['Some', 'Multi-line', 'String']
https://docs.python.org/3/library/string.html